
Efficient exact inference in discrete Anglican programs
Robert Cornish Frank Wood Hongseok Yang

University of Oxford
{rcornish,fwood}@robots.ox.ac.uk, hongseok.yang@cs.ox.ac.uk

1. Introduction
The design of a general probabilistic programming system involves
a balancing act between two deeply conflicting concerns. On the
one hand, the system should provide as uniform and flexible an
interface for specifying models as possible; on the other, it should
be capable of doing efficient inference for any particular model
specified. Current systems lie somewhere on a spectrum that ranges
from highly expressive languages such as Church [2], Anglican [10],
and Venture [3], to highly performant languages like Figaro [7],
FACTORIE [4], and Infer.NET [5]. It has not yet been shown
possible to optimise both these concerns simultaneously.

To improve on this predicament we consider the class of dis-
crete graphical models, for which various efficient exact inference
algorithms exist. We present a technique for determining when
an Anglican program expresses such a model, which allows us to
achieve a substantial increase in inference performance in this case.
Our approach can handle complicated language features includ-
ing higher-order functions, bounded recursion, and data structures,
which means that, for the discrete subset of Anglican, we do not
incur any loss in expressiveness. Moreover, the resulting inference
is exact, which can be useful in contexts where very high accuracy
is required, or for doing nested inference inside larger models.

Details of Anglican can be found in [10], but for our purposes its
semantics may be understood as the Clojure programming language
augmented with a sample statement and an observe statement.
sample takes as argument a distribution object ∆ (which may
be obtained by calling the built-in flip or dirac functions, for
example) and produces a random sample from the corresponding
mathematical distribution, which we denote P∆. On the other hand,
observe takes as its arguments a distribution object ∆ and a value
v, and conditions the current execution trace on the observation
xnew = v for some new random variable xnew ∼ P∆.

In this work, we propose evaluating Anglican code according to
a semantics that constructs a Bayes net on possible program values
as a side effect of execution. Every intermediate value produced
by evaluating some expression M is treated as a random variable,
with a distribution that is conditional on the result of evaluating the
subexpressions of M. We do not distinguish between stochastic and
deterministic computation; for us, deterministic values simply have
Dirac distributions conditioned on their inputs. Our semantics is
non-standard in that we explore all execution traces that occur with
some nonzero probability; in particular, evaluating an if statement
usually involves evaluating both its branches. The output of our
evaluator is a discrete graphical model that is then amenable to
efficient exact inference via, for example, variable elimination [11].
An example is given in Program 1, which our method transforms
into the model shown in Figure 1.

(defquery simple []
(def y (sample (flip 0.5)))
(def z (if y (dirac 5) (dirac 10)))
(observe z 10)
y)

Program 1: A simple program amenable to exact inference

x1 ∼ δ0.5
x2 ∼ δJflip x1K

y ∼ Px2

x3 ∼ δ5
x4 ∼ δJdirac x3K

x5 ∼ δ10

x6 ∼ δJdirac x5K

z ∼ δif(y,x4,x6)

x7 ∼ Pz x8 ∼ δ10

x9 ∼ δJ= x7 x8K

Figure 1: Graphical model equivalent to Program 1. Here, δv
denotes a Dirac distribution centered on v; JMK denotes the result of
(deterministically) evaluating the expression M according to Clojure
semantics; and if denotes a mathematical “if” function rather than a
programmatic one. Each node corresponds to the value of a single
expression that is evaluated in some execution path with nonzero
probability, while edges correspond to immediate dependencies
between these values. The nodes xi correspond to intermediate
values that are not assigned names in the program. The gray node
is observed as having value true, and the blue node is our desired
posterior.

2. Evaluator semantics
We now describe the semantics of our evaluator, which aims to
convert Anglican code into an equivalent graphical model as in
Figure 1. We will denote the state of execution by

Σ = 〈γ, ψ, ϕ, ω, η, α〉 ,
where: γ is a directed graph;ψ maps nodes to an over-approximation
of their supports; ϕ maps nodes to their conditional distributions; ω
is a set of observed nodes; η is the current environment, namely, a
set of frames mapping variable names to their values; and α is the
address of the currently active frame in η. The main components of
interest are γ, ψ, ϕ, and ω, which constitute our desired graphical
model; η and α are symbolic variants of standard devices used for
implementing closures correctly, which we require in order to handle
higher-order functions. We will adopt the convention of referring to
the component γ of a state Σi directly as γi, and likewise for the
other components.

Our treatment of literals, variables, lambdas, and definitions
is straightforward, and our semantics for sample and observe
statements can largely be understood from Figure 1. Big-step
semantics for the most interesting Anglican expressions remaining
are provided below. Our evaluation relation has the form 〈M, Σi〉 ⇓
〈xj , Σj〉, where M is some expression, and xj is some node in γj .
Note also that each component of Σj should be assumed not to
change from Σi unless otherwise stated.

2.1 Primitive applications
We evaluate applications of a first-order Clojure operator by first
evaluating its arguments, and then applying the operator to all
possible values that the arguments may take. That is, for f any
first-order operator:

〈Ni, Σi−1〉 ⇓ 〈xi, Σi〉 , 1 ≤ i ≤ k
〈f N1 · · · Nk, Σ0〉 ⇓ 〈xnew, Σk+1〉

,

1 2016/12/23



where xnew /∈ γk is fresh, γk+1 is γk plus an additional node for
xnew with parents x1, . . . , xk, and

ϕk+1 = ϕk

[
δJf x1 · · · xkK

]
ψk+1 = ψk

xnew 7→ f

 ∏
1≤i≤k

ψk(xi)

 .
2.2 Compound applications
Evaluating a compound application is somewhat complicated, since
we must account for the fact that the value of its operator may be
random, such as in Program 2.

(defn maybe-do-twice [f]
(if (sample (flip 0.5)) (comp f f) f))

((maybe-do-twice inc) 0.5)

Program 2: A compound application whose operator is random

Our approach involves evaluating the application for all values in
the support of the operator, and introducing a node to select from
among these possibilities. Precisely:

〈M, Σ0〉 ⇓ 〈x1, Σ1〉
〈Ni, Σi〉 ⇓ 〈xi+1, Σi+1〉 , 1 ≤ i ≤ k

ψ1(x1) = {[fn [y1 · · · yk] Pi, α
∗
i ] | 1 ≤ i ≤ `}〈

Pi, Σk+i

〉
⇓ 〈xk+i+1, Σk+i+1〉 , 1 ≤ i ≤ `

〈M N1 · · · Nk, Σ0〉 ⇓ 〈xnew, Σk+`+2〉
,

where xnew /∈ γk+`+1 is fresh, and [fn [y1 · · · yk] Pi, α
∗
i ] de-

notes a closure. (Note that α∗
i 6= αi ∈ Σi.) Further, for each

1 ≤ i ≤ ` we have

αk+i = αnew

ηk+i(αnew) = ηk+i(α
∗
i ) [y1 7→ x2, . . . , yk 7→ xk+1] ,

γk+`+2 and ϕk+`+2 are as shown in Figure 2, and

αk+`+2 = α0

ψk+`+2 = ψk+`+1

[
xnew 7→

k+`+1⋃
i=k+2

ψi(xi)

]
.

γk+`+1

. . .
x1

. . .
xk+2 . . .

. . .
xk+`+1

xnew ∼ δprojx1
(xk+2,...,xk+`+1)

Figure 2: γk+`+2 and ϕk+`+2; here projx1
(xk+2, . . . , xk+`+1)

projects onto the xi such that x1 = [fn [y1, . . . , yn] Pi, α
∗
i ]

2.3 If statements
In order to avoid deterministic recursion (such as in Program 3), we
use multiple rules to evaluate if statements according to the support
of its predicate. In particular, we use

〈P, Σ0〉 ⇓ 〈x1, Σ1〉 false /∈ ψ1(x1)
〈M, Σ1〉 ⇓ 〈x2, Σ2〉

〈if P M N, Σ0〉 ⇓ 〈x2, Σ2〉
and the symmetric rule for when true /∈ ψ1(x1). Finally, when
both true, false ∈ ψ1(x1), we proceed exactly as though if were
a primitive operator and apply the rule in Section 2.1.

3. Discussion
Our approach may be understood as efficient enumeration-based
inference, in which we propagate the supports of any random vari-
ables only to their immediate dependents. This entails a significant

performance increase over the sort of naive enumeration technique
referred to in [1], where execution is forked for each possible value
of each random choice encountered at runtime. Whereas naive enu-
meration is exponential in the program’s number of random choices,
our evaluator requires time exponential only in the treewidth of our
program, which is typically much smaller.

An interesting application of our approach is given by the
Schelling coordination game [8], which involves two agents recur-
sively reasoning about the other’s preferences. Program 3 contains
an Anglican version of the implementation found in [9]. Running
this program in our evaluator and then doing variable elimination on
the resulting Bayes net produces the exact conditional distribution of
the value of (bob depth), which existing inference methods within
Anglican are only able to approximate. Moreover, our approach is
fast: when depth = 4, we require 1.053 s in total for evaluation
and inference; when depth = 8, we require 6.47 s. In comparison,
an implementation of the same program in the WebPPL probabilis-
tic programming language required 5.46 s and 9.10 s for the same
depth values when naive enumeration inference was used.

(defquery schelling-coordination-game [depth]
(def location-dist (categorical {:good-bar 0.6

:bad-bar 0.4}))
(def alice (fn [depth]

(let [alice-location (sample location-dist)]
(observe (dirac alice-location)

(bob (dec depth)))
alice-location)))

(def bob (fn [depth]
(let [bob-location (sample location-dist)]
(if (> depth 0)
(observe (dirac bob-location) (alice depth)))

bob-location)))
(bob depth))

Program 3: Schelling Coordination Game

References
[1] N. D. Goodman. The Principles and Practice of Probabilistic Program-

ming. ACM SIGPLAN Notices, 48(1):399–402, 2013.
[2] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and

J. B. Tenenbaum. Church: a language for generative models. CoRR,
abs/1206.3255, 2012.

[3] V. K. Mansinghka, D. Selsam, and Y. N. Perov. Venture: a higher-order
probabilistic programming platform with programmable inference.
CoRR, abs/1404.0099, 2014.

[4] A. McCallum, K. Schultz, and S. Singh. FACTORIE: Probabilistic
Programming via Imperatively Defined Factor Graphs. In Advances in
Neural Information Processing Systems, pages 1249–1257, 2009.

[5] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer .NET 2.5. Microsoft
Research Cambridge, 2012.

[6] A. Pfeffer. IBAL: A Probabilistic Rational Programming Language. In
Proceedings of the 17th International Joint Conference on Artificial
Intelligence - Volume 1, IJCAI’01, pages 733–740, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[7] A. Pfeffer. Figaro: An Object-Oriented Probabilistic Programming
Language. Charles River Analytics Technical Report, 137, 2009.

[8] T. C. Schelling. The strategy of conflict. Harvard university press, 1980.
[9] A. Stuhlmüller and N. D. Goodman. Reasoning about reasoning

by nested conditioning: Modeling theory of mind with probabilistic
programs. Cognitive Systems Research, 28:80–99, 2014.

[10] F. Wood, J. W. van de Meent, and V. Mansinghka. A New Approach
to Probabilistic Programming Inference. In Artificial Intelligence and
Statistics, pages 1024–1032, 2014.

[11] N. L. Zhang and D. Poole. Exploiting Causal Independence in Bayesian
Network Inference. Journal of Artificial Intelligence Research, 5:301–
328, 1996.

2 2016/12/23


	Introduction
	Evaluator semantics
	Primitive applications
	Compound applications
	If statements

	Discussion

